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A PARAMETRIC STUDY OF CONS= THRUST, ELECTmCALLY 

PROPELmD MARS AND VENLTS ORBITING PROBES 

by Leonard G. Rossa 

L e w i s  Research Center 

SUMMARY 


A study has been made t o  determine the  e f f e c t  of mission t r a v e l  time and 
the  vehicle performance parameters on payload f o r  the  Mars and Venus orbi t ing 
probe missions. The vehicle i s  assumed representative of ea r ly  e l e c t r i c a l l y  
propelled spacecraft  t h a t  operate a t  constant thrust and constant e f fec t ive  
spec i f ic  impulse, For both the  Mars and Venus missions, propellant f r ac t ion  i s  
given f o r  a wide range of e f fec t ive  j e t  power t o  i n i t i a l  weight r a t i o  Pjeff/Wo,
ef fec t ive  spec i f ic  impulse Ieff,and t o t a l  t r a v e l  time Tt. Propellant f rac
t ions  a re  comparable f o r  Venus missions 2 5  days shor te r  than Mars missions, and 
the e f f ec t  of i n i t i a l  o rb i t  a l t i t u d e  on propellant f r ac t ion  i s  insignif icant .  
The e f f ec t s  of Pseff/Wo, Ieff,and T t  on payload f r ac t ion  wL are illus
t ra ted .  I n  additgon, t he  e f f ec t s  of spec i f i c  powerplant weight a and a 
s t r u c t u r a l  fac tor  on maxhum payload f r ac t ion  a re  given f o r  the  range of t r a v e l  
times. 

A t  maximum WL, both a’ (a’ a/q where 7 i s  overa l l  t h rus to r  e f f i 
ciency) and T t  have equally s ign i f icant  e f f ec t s  on WLj roughly the same WL 
can be obtained w i t h  a’ = 1 0  or 30 pounds per kilowatt  i f  T t  i s  allowed t o  
increase 100 days f o r  the Mars o r  Venus missions. The associated optimum val
ues of Pjeff/Wo and Ieff a re  a l s o  given f o r  the maximum wL cases. It is 
shown that both parameters a r e  primarily a f fec ted  by a’ with only a s l i g h t  
e f f ec t  due t o  T t .  For maxiqum payload f rac t ion  a t  low powerplant weights, the  
Pjeff/Wo and Ieff should be high. Increases i n  the t r a v e l  time require de
creasing Pjeff/Wo and increasing Ieff. The s t r u c t u r a l  f a c t o r  i n  a l l  cases 
has l i t t l e  e f f ec t  on the  optimum WL, Pjeff/WO, and Ieff. 

? An example of the  use of t he  data and the  e f f ec t  of a var iable  eff ic iency
function (e.g,, 7 = 7 ( I e f f ) )  a r e  given f o r  a Mars spacecraft  using mercury 
electron-bombardment thrustors .  The major e f f ec t  of t h rus to r  ineff ic iency on 
pzyload f r ac t ion  i s  shown t o  be increased powerplant f r ac t ion  because the  r e 
sulting optimum propellant f r ac t ion  i s  near the  optimum value f o r  7 = 1.0. 
Final ly ,  a decrease i n  th rus to r  e f f ic iency  a l s o  has t he  overa l l  e f f ec t  of de
creasing the  opt imm Pjeff/Wo and Ieff. The problem of maximum absolute 
payload i s  also discussed, and an exa.mple i s  given for a Mars spacecraft  with 
a 300-kilowatt e l e c t r i c  powerplant a t  a, = 10 pounds per kilowatt. Specifi
ca l ly ,  payload i s  maximized with respect t o  gross weight at  f ixed  power. 



INTRODUCTION 


Elec t r i c  propulsion systems are a t t r a c t i v e  f o r  many space missions because 
high spec i f ic  impulse and low propellant flow r a t e  give low propellant f ract ion.  
Unlike chemical and nuclear rockets,  e l e c t r i c  rockets have high power-
generation equipment weights, which may r e s u l t  i n  small pay1oa.d fract ions,  
Thus, it is necessary t o  carefu l ly  balance t h e  powerplant and propellant weights i 

f o r  maximum payload, This balance results i n  low i n s t a l l e d  power causing very 
low thrust t o  weight r a t i o s  and long engine operating times. This departure 
from impulsive conditions demands optimization of thrust magnitude and direc
t i o n  t o  give l e a s t  propellant consumption. With the appropriate set of con
s t r a i n t s ,  such optimum thrust  programs can be a t ta ined  through the  use of var i 
a t iona l  calculus, Examples are the  power-limited variable-thrust  program 
(refs .  1and 2 )  and the  constant-thrust program (refs .  3 and 4). The variable-
thrust program i s  of i n t e r e s t  because it gives the  bes t  possible performance> 
however, it may be unachievable f o r  ea r ly  applications because of the  wide 
range over which th rus t  and spec i f ic  impulse must be varied* Therefore, f o r  
ear ly  applications,  the constant-thrust program is of i n t e re s t ,  When the  
constant-thrust program i s  assumed, t he  e f f ec t s  of i n i t i a l  thrust t o  weight 
r a t i o  and spec i f ic  impulse on propellant f r ac t ion  m u s t  be investigated. For 
any l o w - t h r u s t  mission, the  t o t a l  t r a v e l  time i s  a l so  an important parameter 
because of i t s  e f f ec t  on propellant requirements and mission r e l i a b i l i t y *  

Several s tudies  (e.g,, re fs .  4 and 5) have been made t h a t  express a pay
load f r ac t ion  as a function of t o t a l  t r a v e l  timet however, they do not cover a 
complete spectrum of the  corresponding vehicle performance parameters. I n  t h i s  
report ,  a study has been made t o  determine the  e f f ec t s  of both mission time and 
vehicle performance parameters on payload f o r  constant-thrust Mars and Venus 
orbi t ing probe missions 

In reference 5, a study was made f o r  the Mars orb i t e r  mission and the  
Venus capture (rendezvous) mission. This study used both the  variable-thrust  
and constant-thrust programs. When the  constant-thrust program w a s  used, it 

was assumed t h a t  minhiza t ion  of a‘ dT at  a given spec i f ic  impulse approx4T 
imates the  case of minhum propellant fraction. (All symbols a re  defined i n  
appendix A,) The in t eg ra l  i t s e l f  is  a parameter t h a t  arises from the  con
s t r a i n t  of constant power, Although t h e  approximation has been shown (ref. 4) 
t o  be qui te  accurate (1t o  2 percent), only minimum propellant f r ac t ion  data 
i s  given. Therefore, t h e  e f f ec t s  of th rus tor  e f f ic ienc ies  on payload cannot 
be accurately assessed. Reference 5 does, however, i l lus t ra te  the  e f f ec t s  of 

t he  e l l i p t i c i t y  of the Mars orb i t  by giving the  minimum 4’ a2 dT terminal 
. 

mass f o r  t he  bes t  and worst encounters of Mars, The r e su l t s  indicate  a differ- i .  

ence of about 5 percent o r  less between the  best  and worst encounters. ,11 

IIn reference 6, payload optimization techniques were discussed i n  d e t a i l  I 

f o r  the Mars rendezvous mission (hel iocentr ic  t r ans fe r  only) and results were I 

presented f o r  t ransfers  with optimum t r a v e l  angle and bes t  encounter of Mars 
e l l i p t i c  orbit. Effects of both spec i f ic  powerplant weight and eff ic iency on 
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vehicle  parameters were a l s o  discussed. 

The present study assumes that the  thrust a.nd spec i f i c  impulse are held 
constant throughout the f l i g h t ,  except that  the  engine i s  shut down whenever a 
coasting period is  beneficial .  During hel iocentr ic  th rus t ing  periods, the  
thrust is  dArected optimally as determined by a calculus-of-variations computer 
program. (Hereinafter,  t h i s  thrust program i s  re fer red  t o  as constant thrust.) 
During sp i r a l s ,  t he  thrust i s  directed tangent ia l ly  ( r e f .  7 ) ,  which very 
c lose ly  approximates the  t r u e  optimum (ref .  1). The e n t i r e  mission i s  t r e a t e d  
as a s e r i e s  of two-body problems, and, f o r  the  hel iocentr ic  t r ans fe r ,  only the  
optimum t r a v e l  angle t r ans fe r  i s  used. I n  a l l  ca.ses, the  he l iocent r ic  t r ans fe r  
i s  made between assumed c i rcu lar ,  coplanar o rb i t s  a t  a mean dfstance from the  
Sun. For c i r cu la r  planet orb i t s ,  the  optimum t r a v e l  angle and bes t  encounter 
a r e  synonymous. 

I n  t h i s  report ,  the  propellant f r ac t ion  i s  given as a funct ion of effec
t i v e  j e t  power t o  i n i t i a l  weight r a t i o  f o r  constant values of spec i f i c  impulse 
and t o t a l  t r a v e l  time f o r  Mars and Venus orbi t ing probes. From t h i s  data., t he  
e f f ec t s  of any vehicle parameters on payload can be investigated.  Since thrus
t o r  e f f ic iency  var ies  widely w i t h  design and type, no attempt other than an 
i l l u s t r a t i v e  example has been made t o  genera.lize the  e f f ec t  of t h e i r  e f f ic ien
c i e s  on the payload. The propellant f r ac t ion  data given form a su f f i c i en t ly  
complete s t a r t i n g  point f o r  most mission analyses, vehicle design, and thrus tor  
eva1ua.tion. 

To i l l u s t r a t e  the  use of t he  data, t he  performance of a typ ica l  Mars or
b i t i n g  probe i s  discussed i n  appendix B. The problem t r e a t e d  is  that of find-

-Propulsion phase 
_ _ _ _  Coast phase 

Assumed Radius, 
planet m velocitya, 
orbits 
Venus 1 . 0 8 1 4 ~ 1 0 ~ ~  
Earth 1.4953 1.99 10I Mars 2.2779 1 1.0586 

aBased on solar %!? ional constantavi 
p = 1.3245~10 m Isec'. 

Figure 1. - Schematic of Mars and Venus orbiting probes. 

ing maxjmum pay1oa.d f o r  a. t yp ica l  spacecraft. 
The e f f ec t  of e l e c t r i c  power and gross weight 
a r e  disxissed t o  i l l u s t r a t e  problems encoun
t e red  i n  integrat ing the  spacecraft  with an 
o r b i t a l  booster. 

ANALYSIS 


Orbiting Probe Trajectory 

I n  any mission a.nalysis work, some c r i t e 
r i o n  i s  chosen f o r  optimization. This gen
e r a l l y  i s  the  maximum useful  payload f r ac t ion  
commensurate with such f ac to r s  as economy, 
r e l i a b i l i t y ,  ava i l ab i l i t y ,  and so for th .  
Even when the  l a t t e r  fa.ctors a re  neglected, 
it is  desirable t o  employ minimum propellant 
m2neuvers from the s t a . r t  t o  the  end of t he  
mission. I n  some ca.ses, however, optimum 
t r a j e c t o r i e s  and t h e i r  corresponding thrust 
programs are  not compatible with a.vailable 
thrus tors  and guidance systems. 

For Mars and Venus orb i t ing  probes using 
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ea r ly  e l e c t r i c  propulsion systems, an optimum on-off constant-thrust t r a j ec to ry  
appears f e a s i b l e j  that is, optimum i n  the  sense that thrust vector s teer ing 
over t he  r e l a t ive ly  long propulsion periods gives minbum propellant expendi
ture.  Such interplanetary t r a j ec to r i e s  with optimum placement and duration of 
intermediate coast phases have been demonstrated i n  references 3 and 4. These 
t r a j ec to r i e s ,  computed by ind i rec t  var ia t iona l  calculus techniques, have been 

7
used herein f o r  t he  interplanetary phase of t h e  mission. The en t i r e  t r a j ec to ry  
(f ig .  1)f o r  t he  orbi t ing probe i s  t r ea t ed  as a s e r i e s  of two-body problems -
an Earth escape sp i r a l ,  a hel iocentr ic  transfer, and a planetocentric capture 
s p i r a l ,  The planets (Venus, Earth, and Mars) are  assumed t o  be i n  c i rcular ,  
coplanar o rb i t s  about the  Sun. The same thrust and ef fec t ive  spec i f ic  impulse 
i s  assumed operative over t he  e n t i r e  t ra jectory.  The s p i r a l s  a re  constant tan
gen t i a l  thrust maneuvers between 400-statute-mile c i rcu lar  o r b i t s  and escape 
r e l a t i v e  t o  the  planets (ref. 7 )*  Although the  r e s t r i c t i o n  of a 400-statute
mile orb i t  i s  a rb i t ra ry ,  the e f f ec t  of i n i t i a l  o rb i t  a l t i tude  on the  overal l  
mission i s  small, This e f f ec t  i s  fur ther  discussed i n  the  sect ion RESULTS AND 
DISCUSSION f o r  a typ ica l  set of vehicle parameters. 

In basic  t r a j ec to ry  work, two parameters are important - t he  thrust act ing 
on the  vehicle F and the  r a t e  of change of vehicle mass &; however, r e su l t s  
a r e  not always conveniently expressed nor widely used with F and &t as 
parameters. Other t r a j ec to ry  performance parameters more widely used in elec
t r i c  propulsion mission s tudies  a re  e f fec t ive  spec i f ic  impulse 

Ieff= -F 
gC% 

a.nd ef fec t ive  j e t  power 

where g, = 9,80665 meters per second per second, 

The terminology of e f fec t ive  spec i f ic  impulse and ef fec t ive  jet power i s  
used here t o  emphasize the  f a c t  that $ is  the t o t a l  m a s s  flow rate. I n  an 
ion t h r u s t o r  system, f o r  example, I;.c can represent the accelerated ions t h a t  
produce the  thrust and neu t ra l  atoms, which r e s u l t  f r o m  the  ineff ic iency of 

ionization. Note that the assumption of constant F and Ieff a l s o  implies 

constant At .  . 


In  addition t o  the two t r a j ec to ry  performance parameters given previously, 
t he  mission parameter t o t a l  t ravel time T t  i s  a l s o  important i n  t h a t  it af- b 
f e c t s  t he  propellant f r ac t ion  and mission r e l i ab i l i t y .  Thus, propellant f rac

f

t i o n  can be s t a t ed  as 'II 
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f o r  t he  o p t F "  constant-thrust t ra jec tor ies .  

Weighrt Analysis 

i To this point only the  t r a j ec to ry  has been discussedc The purpose of this 
sec t ion  is t o  illustrate how the  wp data is  used i n  t h e  orb i t ing  probe mis
s ion  analysis. The importan-b parameters affect ing pa.yload f r ac t ion  are defined, 

1 and c r i t e r i a  a re  given f o r  maximum wL. Since this is a preliminary analysis,  
no attempt i s  made t o  define a useful  payload by including the  multitude of 
s m a l l  systems t h a t  make up a spacecraft .  Hereinafter t he  spacecraft  is  con
sidered t o  be payload, e l e c t r i c  powerplant, propellant,  and. a propellant-
dependent s t ructure .  

Definition of parameters1. - With the  aforementioned assumptions, 

wo = WL -t (1+ W p  + wpp (4) 

o r  

wL = 1 - (1+ ks)w
P 

- w
PP (5) 

where the  W ' s  axe system weights and w ' s  are w e i g h t  fractions.  For t h e  opt i 
mized constant-thrust t r a j ec to r i e s ,  t he  propellant f r ac t ion  is given by equa
t i o n  (3). The weight f r ac t ion  of t h e  powerplant is defined as 

where a i s  the  spec i f ic  weight of an e l e c t r i c  powerplant delivering 9 kilo
watts of e l e c t r i c  power t o  the  thrust producing system, The w e i g h t  of t h e  pow
erplant  i s  assumed t o  be the  weight of a11 the  components (heat  sources, con
version equipment, conditioning equipment, etc.) necessary t o  produce e l e c t r i c  
power a t  the  required currents and voltages. 

I f  t h e  overa l l  eff ic iency q is defined as the  r a t i o  of effect ive j e t  
power t o  input power, the powerplant fra.ction becomes 

a Pjeff
wPP = q wo ( 7 )  

I n  appendix B, it is  shown t h a t  f o r  i o n  thrus tors  t he  overa l l  eff ic iency can be 
expressed as the  product of the  propellant u t i l i z a t i o n  e f f ic iency  vu and t h e  
thrus tor  power e f f ic iency  qp. It is a l so  shown t h a t  qp i s  only a function 

thrus tor  design- Theref ore, 
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Subst i tut ing equations ( 3 )  and (8) i n t o  equation (5)  r e s u l t s  i n  the  payload 
f r ac t ion  

Criteria f o r  maximum wL. - From equation (9),  it is evident t h a t  t he  
Lparameters affect ing the  payioad f r ac t ion  a re  the  vehicle performance parame

t e r s  Pjeff/Wo and Ieff,the  thrus tor  performance parameters 'quj t he  mission 
parameters T t ,  and the constants ks and a. These parameters can be divided 
i n t o  two groups - those f ree  f o r  optimization and those t h a t  m u s t  be t r ea t ed  as 
spec i f ied  constants. If Tt, ks, and a a re  t r ea t ed  a s  specif ied constants, 
then payload f r ac t ion  can be optimized with respect t o  Pjeff/Wo, Ieff,and 
quo A range of t he  constants w i l l  then give t h e i r  gross e f f ec t s  on an opt i 
mized payload fraction. Thus, d i f fe ren t ia t ing  equation ( 9 )  f o r  t h i s  case gives 

dWL = 

& a ( Z Z )  

- [ ( l + k s )  &- ,12 &%ff (10) 

For a maximwn WL, dwL = 0, and, since Pjeff/WO, Ieff,and vu 
1

are  a l l  inde
pendent variables,  coeff ic ients  of the  d i f f e ren t i a l s  of these va.riables m u s t  
independently be zero. I f  any one of these independ-ent variables i s  a l s o  con
sidered specified,  then i t s  d i f f e r e n t i a l  i s  zero and no information is obtained 
from the coeff ic ient  in equation (10). I n  general, the  necessary conditions 
f o r  a m a x i m u m  payload f r ac t ion  are  

6 
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Since the  condition expressed by equation ( l l a )  i s  simply the  requirement of 
maximum overa l l  e f f ic iency  f o r  each Ieff,using 7 = q m X ( I e f f )  satisfies one 
condition f o r  m a x i ”  wL. The d e t a i l s  of sa t i s fy ing  equation ( l l a )  are given 
i n  appendix B f o r  t h e  Mars probe using s ta te-of- the-ar t  mercury electron
bonibardment thrustors .  This conclusion could have been made d i r e c t l y  from 

\ equation ( 9 )  s ince maxhum overa l l  e f f ic iency  ensures ”m wp and has no 
fu r the r  e f f ec t  on wp a t  a given Ieff. The propellant u t i l i z a t i o n  e f f ic iency  

1 	 is ,  however, used as an independent var iable  because such component weights as 
thrus tors  ( i f  they had been included) may require overa l l  e f f ic ienc ies  less 
than maximum t o  ensure maximum WL. 

A t  each Pjeff/Wo, a l o c a l  maxi” can be obtained with respect  t o  Ieff. 
The condition necessary f o r  t he  maximum i s  expressed by equation ( l l b ) ,  which 
depends on the  e f f ic iency  function, t he  spec i f ic  powerplant weight, and the  
s t r u c t u r a l  factor .  Thus, t h e  choice of t h e  bes t  Xeff i s  a f fec ted  by a l l  
these parameters; however, f o r  the  spec ia l  case when ef f ic iency  i s  assumed a 
constant (not a function of Ieff),a?)/dIeff = 0. Hence &p/aIeff = 0 a t  
maximum payload fract ion.  For t h i s  case, t he  optimum Ieff  i s  independent of 
any of the specif ied constants. Moreover, the propellant f r ac t ion  i s  a minimum 
with respect t o  Ieff. 

A t  a given Ieff,equation ( l l c )  i s  the  condition necessary f o r  a l o c a l  
maximum with respect t o  Pjeff/Wo. Since t h i s  expression i s  independent of 
Pjeff/Wo, it i s  generally easy t o  sa t i s fy .  For 7 = 1.0 and ks = 0, t h e  con
d i t i o n  reduces t o  the  requirement that the slope equals -a. 
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(a) Mars orbiting probe. (b) Venus orbi t ing probe. 

Figure 2. -Effect of vehicle performance parameters and total travel t ime on propellant fraction. 
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To summarize, two methods can be used to obtain maximum WL. It can be 
obtained d i r ec t ly  by computing severa l  values, p lo t t ing  the r e su l t s ,  and se

l ec t ing  the maximum. Another method i s  the  ind i rec t  method of sa t i s fy ing  the  

c r i t e r i a  for a maximum ( L e . ,  eq. (11))t o  determine the  optimum performance 

parameters. These can then be used to compute the  maximum wL. Both methods 

have merit3 the  f o m r  i s  straightforward but can involve many repeated calcu- c 


l a t ions ,  while t he  l a t t e r  method can lead t o  reduced computations and orten 

gives an insight  about the  nature of t h e  optimum, The u t i l i t y  of th is  method 


I

i s  i l l u s t r a t e d  i n  appendix B. 

RESULTS AND DISCUSSION 

Trajectory Results 

The results of the  orbi t ing probe t r a j ec to ry  calculations are given i n  
f igure  2. I n  this f igure  is  given as a function of Pjeff/Wo (kw/lb) with 
l i n e s  of constant Ieff(ie:p and T t  (days), A t yp ica l  curve i s  given i n  f i g 
ure 3 t o  a i d  i n  the  explanation of f igure  2. Note i n  f igure 3 t h a t  a t  a given 
Tieff and >, wP rapidly decreases from t h e  a l l  propulsion (no coa.st) value 
t o  the value characterized by the  best  hel iocentr ic  t r a v e l  time, This lower 
bound i s  the  low-acceleration equivalent of the  Hohmann t r ans fe r  f o r  impulsive 

1.0 

1 

. 9  

. a  

I 
. l  1 

I 
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. 6  I 
0 Total 
zm travel 
t time, 
I 
m 

0 5  

i ls ion Tt*L 

W ne .4 
L /\ “r 

. 3  x 
. 2  	 Locus 

t r , r e ihe1iocentric 1 
. I  

~~ 

thrust ,  N o t  a l l  of t h e  
curves of f igure  2 end a t  
this lower bound because 
an arbitrary range on 
F/WO w a s  imposed - val
ues less than 0. 5X10‘4 or 
greater  than 5X~0’~were 
not considered. 

Several chara.cter
i s t i c s  a re  t o  be noted 
about the  curves. F i r s t ,  
t he  c lus te rs  of T t  
curves a t  one Ieff a l l  
approach nearly the  same 
value of wp a t  t he  low-
accelerat ion equiva.1en-t 
of t h e  Hohmam transfer. 

4For example, a t  

Ieff= 2000 seconds, t h e  


lowest w f o r  all Tt i 


i s  about 8.54 f o r  t he  

Mars orbi t ing probes, 

second, Pj e f f / W O  , 


0 .02 .03 .04 .10 s l i g h t l y  greater than the  
Effective jet power to in i t ia l  weight ratio, Pjef+Wo, kwllb all-propulsion-value re -

Figure 3. -Typical propellant fraction curves for Mars orbit ing probe. Effective specific sults in a large reduc
impulse, 6OOO seconds. t i o n  i n  wp* T h i s  e f f ec t  
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i s  equivalent t o  allowing f o r  a coasting phase on t he  he l iocent r ic  t ra jectory.  

A comparison of f igures  2(a)  and (b)  reveals t h a t  propellant f r ac t ion  a t  
low values of Pjeff/Wo and Ieff are  s ign i f icant ly  higher f o r  Venus missions. 
T h i s  penalty is due t o  the  higher gravi ty  losses  experienced during the  Venus 
capture s p i r a l  since t h e  mass of Venus i s  approxLmately 7.5 times the  mass of 

7 Mars. A t  higher values of Pjeff/WO and Ie f f ,  this difference vanishes and 
the  Mars mission i s  seen t o  be more d i f f i cu l t .  The predominant e f f ec t  is  tha t  
the  Mars-Earth radius r a t i o  (-1.52, Le . ,  r e l a t i v e  distances from %he Sun) i s  
higher than the Earth-Venus radius r a t i o  (-1.38). I f ,  however, the Mars probe 
i s  given s l i g h t l y  more time, the  missions a re  much more comparable. For ex
ample, an orbi t ing probe vehicle with Pjeff/Wo = 0.04 kilowatt  per pound, 
Ieff = 6000 seconds, and wp = 0.328 can deliver the same m a s s  t o  Mars i n  
175 days or t o  V e n u s  i n  140 days. 

Effect  of In i t ia l  Orbit Alti tude 

As  s t a t ed  previously, t h e  e f f ec t  of i n i t i a l  o rb i t  a l t i t u d e  on t h e  mission 
i s  s m a l l .  T h i s  i s  i l l u s t r a t e d  i n  f igure  4 where wp i s  p lo t ted  against  in i 
t i a l  orb i t  a l t i t ude  h~ f o r  a 250-day Mars mission with Ieff  = 6000 seconds. 
From the  f igure at  Pjeff/Wo = 0.020 kilowatt per pound, it i s  seen that f o r  a 
change in ho from 200 t o  1000 miles, wp decreases from 0.283 t o  0.270 - a 
savings of only 4.6 percent. The e f f ec t  of ho i s  sma.llbecause a vehicle at  
escape ( the  start  of t he  hel iocentr ic  t r ans fe r )  f r o m  a low o rb i t  has a higher 
thrust acceleration than the  same vehicle from a higher orbit .  This higher 
thrust accelerat ion tends t o  reduce propella,nt requirements f o r  t he  remainder 
of the  t r i p ;  however, a s p i r a l  from a low o r b i t  requires more t h e .  With the  
constraint  of constant t o t a l  t r a v e l  time, this m e a n s  less t i m e  for t h e  helio
cent r ic  t r ans fe r  and capture s p i r a l  and f o r  t h i s  case, more propellant. As the  
Mars s p i r a l  requirements a re  s m a l l ,  these e f f ec t s  primarily influence the  

l l l l qEffective iet Power to 

0 
In i t ia l  orbit altitude, h,,, statute miles 

Figure 4. - Effect of in i t ia l  orbit  altitude on propellant 
fraction for Mars orbit ing probes. Total travel time, 
250 days; effective specific impulse, 6oM3 seconds. 

hel iocentr ic  t ransfer .  Thus by t rading 
a l l o t t e d  time and thrust t o  weight, the  
hel iocentr ic  propellaat  requirements re
main about the  same, and the  overal l  ef
f e c t  is  approximately the  propellant dif
ference f o r  t h e  Earth sp i ra l .  From these 
arguments it can be concluded that there  
i s  l i t t l e  e r ro r  in using t he  data f o r  mis
sions that comence i n  c i rcu lar  o rb i t s  
somewhat different than the  a.ssumed value 
of 400 statuke miles- It i s  a l so  believed 
that i n i t i a l  o rb i t  a l t i t u d e  has l i t t l e  
e f f ec t  on t h e  Venus orbi t ing probes. 

Effect  of Performance Parameters 

In the  ANALYSIS, it was shown t h a t  
for maximum WL minimum propellant frac
tion w a s  optimum f o r  constant efficiency.
I n  the  example i n  appendix B, equa
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t i o n  ( l l b )  w a s  sa . t i s f ied  for an eff ic iency function, which i s  representative of 
mer c&y e l ectron-b ambardment thrust ors  The results were a l so  shown t o  be 

Y 

rota1 trave 
time, 
Tt. 

L 
.07 . .09 .10 0 .01 .02 .03 .M . 

Effective jet power to in i t ia l  weight ratio, Pjeff/Wo, kwllb 

(a) Mars orbit ing probes. (b) Venus orbit ing probes. 

Figure 5. -M in imum propellant fraction a5 function of effective jet  power to in i t ia l  weight ratio, total travel time, and optimum 
effective specific impulse. 

reasonably approximated by assuming bwp/aIeff = 0- Therefore, in t he  follow
i n g  payload computations, 17 i s  assumed t o  be constant- Ts f igure  5, minFmwn 

p 4 

.09 .I10 0 .01 .02 .03 .M . .I 0 
Effective jet power to in i t ia l  weight kwllb 

(a) Mars orbit ing probes. (b) Venus orbiting probes. 

Figure 6. -Effect of vehicle performance parameters and total travel time on payload fraction. Specific powerplant weight, 10 
pounds per kilowatt: structural factor, 0.10. 
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propellant f r ac t ion  is  given as a function of Pjeff/Wo f o r  values of constant 
T t ,  The optimum values of Ieff are a l s o  tra.ced on the  figure,  With the  
assumption of constant efficiency, it is convenient t o  define a’ a/q since 
a and q appear only as the  r a t i o  i n  equations ( 9 )  and (11). 

To illustrate the  optimum discussed and the  e f f ec t s  of off-optimum vehicle 
7 performance parameters, WL is  given i n  f igure 6 for a’ = 10 pounds per kilo

w a t t  and ks = 0.10, The dashed lines t i e  the points where WL is optimized 
with respect t o  Pjeff/Wo a t  constant Ieff.A t  any value of T t  and Ieff 
(egg., 250 days and 6000 sec f o r  t he  Mars mission), WL i s  seen t o  be r e l a t i v e l y  
insensi t ive t o  Pjeff/Wo near the  optimum of 0.0182 kilowatt per pound. For 
example, a 10-percent change i n  Pjeff/Wo produces about the  same change i n  
WLj however, a random choice of Pjeff/WO can result i n  very s igni f icant  pen
a l t i e s ,  If Pjcff/Wo i s  held constant, the  e f fec ts  of Ieff are  roughly the  
same as those of Pjeff/Wog Thus, optimizing both parameters i s  equally im
portant. 

If the  envelope curve i s  drawn t o  the  curves of constant T t  f o r  t he  
range of Ieff,maximum wL would be obta.ined as a function of Pjeff/Wo. 
These are  equivalently the  payload fract ions f o r  the  cases of minimum wp, The 
r e su l t s  for the  complete range of T t  a re  given i n  f igure 7. A s  shown i n  f ig 
ure 7, Ieff can be varied f romthe  optimum i n  the range of 5000 t o  10,000 sec
onds with l i t t l e  penalty i n  WL. Also note t h a t  the  maxi” WL a t ta inable  
i s  determined mainly by Tt, A n  in te res t ing  r e su l t ,  a l s o  noted i n  reference 6, 
is t h a t  P,jeff/Wo and the  optimum Ieff a t  any T t  vary s o  t h a t  t he  i n i t i a l  
thrust  t o  weight r a t i o  F/Wo i s  nearly a constant. For example, a t  

In 

.05 


.specific impulse, J 
- (1eff)optI 

sec A 
.07 .08 .09TlllE.10 

.01 .02 .o: 
!I 

I .09 .10 
Effective jet power to in i t ia l  wf ht ratio, PjefdWo, kwllb 

(a) Mars orbit ing probes. (b) Venus orbit ing probes, 

Figure 7. - Optimum payload fraction as function of effective je t  power to in i t ia l  weight ratio, total travel time, and optimum ef
fective specific impulse. Specific powerplant weight, 10 pounds per kilowatt; s t ructura l  factor, 0.10. 
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Tt = 250 days, F/WO = 1.28XL0'4 a t  Ieff= 4000 seconds and 1.42><10-4 a t  
Ieff= 10,000 seconds. 

- Effect  of Specific Powerplant Weight, S t ruc tura l  

Factor, and Total  Travel Time 

Maximum wL. - In f igure  8 the  maxhum payload f r ac t ion  is  p lo t ted  as a 
function of t o t a l  tra.ve1 t h e .  For the  chosen values of a1 and ks, both 

Structural  factor, 

Specific 	 werplant 
ht, 

I 

L3 I4 
100 140 180 220 260 300 340 

rota1 travel time, Tt, days 

(a) Mars orbiting probes. (b) Venus orbi t ing probes. 

Figure 8. -Effect of total travel time, specific powerplant weight, and structural  factor on maximum payload fraction. 

Pjeff/WO and Ieff have been optimized. It is noted t h a t  both a? a.nd Tt 
have a much la rger  e f f ec t  than ks. Also, a Ma.rs orbi t ing probe with a power-
plant a t  a' = 30 pounds per ki1owa.t-t can carry about t he  s a m e  payload as one I 

with a' = 10 pounds per kilowatt if Tt Fs extended by 100 days. 

Optimum Pjeff/Wo. - In  f igure  9, Pjeff/Wo, t o  achieve m a x i m u m  payload t 

f ract ion,  i s  plot ted against  T t .  This f igure shows t h a t  the optimum Pjeff/Wo 
is  primarily a function of a ' .  This i s  par t icu lar ly  t rue  a t  high values of 
a' -where only a s m a l l  change i n  Pjeff/WO occurs over the  en t i r e  range of 
T t .  It is a l s o  noted that a t  low a ' ,  the  Pjeff/Wo i s  high and vice versa a t  
high a'.  In f ac t ,  the  powerplant f rac t ion  wpp = arPjeff/Wo i s  roughly a 
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constant between 1/4 and 1/3 over the en t i r e  range of T t  and a ' ,  except a t  
high Tt and low a' and low Tt and high ax ( i -e . ,  t h e  upper left-hand 
corner and lower right-hand corner of f i g .  9). 

From f igure  9, it i s  a.lso seen that decreasing the t o t a l  t r a v e l  time re
quires increasing Pjeff/Wo. For the  low va.lues of a ' ,  the  increa.se i s  more 

Structuralt " "  factor. 
kS 

0 
 Y 

100 140 180 I 3 I 420 

Total travel time, Tt, days 

(a) Mars orbiting probes. (b) Venus orbiting probes. 

Figure 9. - Effect of total travel time, specific powerplant weight, and structural  factor on optimum effective jet power to in i t ia l  
weight ratio. 

pronounced since propellant f r ac t ion  ca.n be reduced without s ign i f icant  in
creases i n  the powerplant weight. At any a s  the  10-percent s t ruc tu ra l  f ac to r  
has the constant e f f ec t  of increasing Pjeff/Wo by about 0,002 kilowatt per 

Struhu;al I I H S p e c i i i c  
I , . 


factor, weight, 

01 
100 


-
3 

Total travel time, Ti, days 

(a) Mars orbi t ing probes. (b) Venus orbi t ing probes. 

Figure 10. -Effect of total travel time, specific powerplant weight, and structural  factor on  optimum effective specific impulse. 
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Optimum Ieff.- Figure 10 gives the  optimum Ieff f o r  t he  maxi” pay
load cases. The e f f ec t  of T t  here i s  opposite t o  that of Pjeff/Wo because 
the  vehicle accelerat ion i s  d i r e c t l y  proportional t o  Pjeff/Wo and inversely 
proportional t o  Ieff. Specific powerplant weight a’ a l s o  determines the  
range of Ieff. For example, t h e  optimum Ieff i s  between 5000 and 10,000 sec
on& f o r  a’ = 10 pounds per kilowatt  and between 2000 and 5000 seconds for 
a’ = 30 pounds per kilawatt- The ef fec t  of the  10-percent s t r u c t u r a l  f a c t o r  
i s  t o  increase the  optimum Ieff by about 500 seconds or l e s s .  From f igures  9 
a.nd 10, t he  optimum F/Wo can be obtained. If this i s  done, it w i l l  be seen 
that F/Wo i s  primarily determined by T t ,  The e f f e c t  of increa.sing T t  is 
t o  decrease the  F/Wo. Increasing a’ has the  s l i g h t  e f f e c t  of reducing the  
optimum F/Wo. 

CONCLUDING REMCWCS 

A parametric study has been made of constant-thrust ,  low-acceleration Ma.rs 
and Venus orbi t ing probes, Propellant f rac t ions  are given f o r  a broad range 
of vehicle performance parameters for the  missions t h a t  are t r ea t ed  as a s e r i e s  
of two-body problems. Constant tangent ia l  thrust i s  used f o r  the planetocen
t r i c  portion, and an optimum constant t h r u s t  (with coasting periods) i s  used 
f o r  t he  hel iocentr ic  portion of the mission. Although a l l  the  data i s  f o r  a 
mission comeicing i n  a 400-statute-mile c i r cu la r  orb i t ,  t he  e f f e c t  of i n i t i a .1  
o rb i t  a l t i t u d e  i s  shown t o  be s m a l l .  

The propellant f r ac t ion  data f o r  both Mars and Venus is very compara.ble 
f o r  the  same s e t  of vehicle performance parameters (Pjeff/Wo a.nd Ieff)except 
that the  Venus mission occurs i n  less time. This is t r u e  bemuse the  s t r ingent  
requirements of t h e  Venus capture s p i r a l  tend t o  compensa.te f o r  the  difference 
between Mars-Earth and Earth-Venus radius r a t io s .  

Payload f rac t ions  a re  given f o r  a s implif ied model of‘ an e l e c t r i c a l l y  pro
pel led spa.cecraft. The e f f ec t  of off -optimum vehicle perPorma.nce parameters i s  
i l l u s t r a t e d  f o r  a. representative s e t  of parameters over a wide ra.nge of tra.ve1 
time. The e f f ec t s  of spec i f ic  powerplant weight, a struc‘cura.1 fac tor ,  and 
t o t a l  t r a v e l  time a r e  i l l u s t r a t e d  f o r  maximum payload f r ac t ion  where Pjeff/Wo
a.nd Ieff a r e  optimized. 

As  these r e s u l t s  were a l l  for t h e  case of consta.nt t h rus to r  efficiency, 
a representat ive var ia t ion  of 7 with Ieff was studied- The r e s u l t s  ( i n  
appendix B) indicate  that the  optimum propellant f r ac t ion  i s  only s l i g h t l y  
higher than the  mini” propellant f rac t ion ,  and t h a t  the  overa l l  e f f e c t  is 
e s sen t i a l ly  only an increased powerplant f ract ion.  The corresponding vehicle 
perSormance parameters a re  s l i g h t l y  lower for t h i s  case than f o r  the  ca.se of 
maxbum payload f r ac t ion  with 100-percent th rus tor  efficiency. 

I n  appendix B the  problem of maximum WL is  discussed. It i s  shown that 
when Wo i s  specified,  t he  case of maximum WL with respect  t o  P is  iden
t i c a l  t o  the  case of maximum payload fract ion.  I n  general, maximum payload 
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a t  any WO and P are not maximum payload f rac t ion  cases. These considera
t ions  a re  important when a spacecraft  of given power is integrated with avail
able boosters of a given o r b i t a l  payload capabi l i t ies .  

Lewis Research Center 
Natianal Aeronautics and Space Administration 

Cleveland, Ohio, A u g u s t  4, 1964 
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SYMBOLS 

thrust a.cceleration 

thrust, newtons 

i n i t i a l  acceleration, Earth g ' s  

9.80665 m/sec2 

o rb i t  a l t i t u d e  , s t a t u t e  miles 

e f fec t ive  spec i f i c  impulse, sec 

a units conversion constant 

propellant dependent s t r u c t u r a l  f ac to r  


molecular weight 


m a s s  flow r a t e  of accelerated propellant , kg/sec 


t o t a l  mass flow r a t e  of vehicle,  kg/sec 


input power t o  thrus tors ,  w 


j e t  power, w 


ef fec t ive  j e t  power, w 


th rus tor  power losses ,  w 


t r a v e l  time, days 


average exhaust veloci ty ,  m/sec 


system weight, l b  


system weight f r a c t i o n  


powerplant spec i f ic  weight, lb/kw 


a/rl , 1b/kw 


overal l  t h rus to r  eff ic iency 


th rus tor  power eff ic iency 
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TU propellant u t i l i z a t i o n  ef f i c i e m y  

E, th rus tor  power loss per ion produced, ev/ion 

Subscripts : 

L payload 

IllaX maxi” 

0 i n i t i a l  

opt optirnm 

P propellant 

PP powerplant 

t t o t a l  
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AF'RTNDIX B 

PAYLOAD C A P A B I L I T I E S  OF T Y m C A L  

MARS ORBITING PROBE 

The purpose herein is  t o  discuss the  performance of a l o w - t h r u s t  Mars or
b i t i n g  probe and t o  illustrate the  e f f ec t  of a typ ica l  state-of-the-art  engine 
efficiency, Since subsystems such as t h r u s t o r  a.nd powerplant a.re of ten devel
oped independently, t he  pr incipal  problem i s  one of integrat ing and assessing 
t h e i r  individual e f fec ts  on the  mission. Suppose the  problem i s  s t ipu la ted  as 
t h a t  of optimally delivering payload t o  Mars i n  300 days with a nuclear-
e l e c t r i c  powerplant weighing 10 pounds per kilowatt. Mercury electron-
bombardment ion thrus tors  a re  t o  be used, and the  e f fec ts  of t h e i r  eff ic iency 
on performance are t o  be estimated. This problem i s  similar t o  the  maximum 
payload f r ac t ion  problem i n  the  t e x t  except f o r  t h e  eff ic iency function assumed, 
and the  performance can readi ly  be assessed f rom the  data a.nd methods given. 
I f ,  however, the  e l e c t r i c  powerplant output i s  f ixed and the  system is  t o  be 
integrated with a booster with given payload capabi l i ty ,  maximum payload does 
not necessarily occur a t  the  maxi" payload fract ion.  I n  other words, the  
problem would then be t o  maximize the  delivered payload of an e l e c t r i c a l l y  pro
pel led vehicle, given an e l e c t r i c  powerplant output and some gross weight Fn 
orbi t  determined by the  booster performance. This case, termed the  problem of 
maximum payload, w i l l  a l s o  be t r ea t ed  herein. 

Effects  of Thrustor Efficiency 

To assess the  e f fec ts  of t h rus to r  efficiency, it is necessa.ry t o  determine 
how the  overal l  eff ic iency i s  affected by vehicle performance parameters a.nd 
t h r u s t o r  performance parameters. The overal l  eff ic iency of t h e  thrus tor  i s  
defined as the  r a t i o  of e f fec t ive  j e t  power t o  t o t a l  input power 

When any thrustor  i s  considered (ref. S ) ,  t he  power eff ic iency can be de
f ined as the  r a t i o  of j e t  power t o  t o t a l  input power 

where Pj i s  defined by the  net thrust and average exhaust veloci ty  as followsz 

1
p.
J 

= -FV
2 

The average exhaust veloci ty  7 is  defined as the  thrust divided by the  flow 
rate of the  accelerated propellant 6. I f  the  propellant u%il izat ion efficiency 
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r 

vu is  defined as the  r a t i o  of accelerated propellant t o  the t o t a l  mass flow 
r a t e  %, t he  average exhaust veloci ty  becomes 

-v 3 - F 

%+t 

where 

- &= 
vu 


mt 

When equations (B3) and (B4) a re  subst i tuted i n t o  equation (BZ),  t h e  power 
eff ic iency becomes 

If equations (1)and ( 2 )  of the  ANALYSIS a re  combined, 

Thus, equations (B6)  and (B7) give 

and comparing equations (B8) and (Bl) shows t h a t  

Thus, it i s  seen that the  overal l  eff ic iency i s  the  product of the  power and 
propellant u t i l i z a t i o n  eff ic iencies .  Another expression for the  power e f f i 
ciency can be developed i f  t o t a l  input power i s  wri t ten as 

B = P j + C %  ( BlO> 

, where P2 i s  the  sum of a l l  power losses. The sum of power losses can be 
expressed as a power loss per ion  produced 6 multiplied by the  ion flow rate. 
For a plane diode, electron-bombardment th rus to r  with a l l  molecules s inglyi

t 

charged, t he  sum of the  power losses  i s  (ref. 8) 



1.0 

where k i s  a constant f o r  the  conversion of un i t s  a.nd M is  the  molecular 
weight of t he  propellant. The power eff ic iency i s  then 

Thus, the overa l l  eff ic iency i s  

From equation (B13) it i s  evident that the  overa l l  eff ic iency is a function of 
t h e  propellant type, the  propellant u t i l i z a t i o n  efficiency, the  power loss per 
ion, and the  e f fec t ive  spec i f i c  impulse. Furthemore, if a par t icu lar  engine 
design and propellant are considered, a.n operating curve of t he  power loss per 
ion as a function of propellant u t i l i z a t i o n  e f f ic iency  can be experimentally 
determined, and ’1 can be expressed as 

With t h e  re la t ions  f o r  7 developed and the c r i t e r i a  for maximum payload 
f r ac t ion  developed i n  t h e  ANALYSIS, t he  e f f ec t  of eff ic iency can be determined. 
A first condition = 0 (eq. ( l l a ) )  is s a t i s f i e d  by d i f fe ren t ia t ing  equa
t i o n  (~13). mus, for %-,/avu = 0, 

which a t  a given Ieff defines a. point on the  operating 
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Figure 11. - Power losses Figure 12. -Maximum overall efficiency of mercury 
in mercury electron- electron-bombardment thrustors. 
bombardment thrustors. 
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curve ( E  against  vu).
This point corre
sponds t o  t h e  m a x i ”  
overa l l  eff ic iency a t  
t h e  given &ff. The 
operating curve as
sumed here is given 
i n  f igure  11 (ref. 9 )  I 
For this case, ma.xi
mum overa l l  eff i 
ciency, as defined by 
equation ( B15), is 
given i n  f igure  1 2  as 
a function of Ieff. 
Thus, u s i n g  this 
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f igure  t o  calculate  WL s a t i s f i e s  one condition f o r  a m a x i ” .  

Two conditions remain t o  be s a t i s f l e d  t o  obtain an overa l l  maximum WL. 
They a re  the  conditions r e l a t e d  t o  
equations ( l l b )  and ( l l c )  become 

To obtain the  overa l l  ma.ximum 
sa t i s f i ed .  This can be achieved by 
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Figure 13. -Trajectory results for 300-day Mars orbiting probe. 
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Pjeff/Wo and Ieff. From the  ANALYSIS, 

(B16a) 

( B16b ) 

W L ~both conditions m u s t  be simultaneously 
a systematic t r ia l -and-error  procedure of 
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f inding the  optimum Pjeff/WO and Ieff,or by sa t i s fy ing  e i t h e r  one of equa
t ions  (B16) over the  range of the  other parameter and p lo t t ing  %he results t o  
determine the overal l  maximum. The l a t t e r  procedure, with equa.tion (B16a) sat
i s f i e d  over t he  range of Ieff w a s  used here t o  i l lustrate the  e f f ec t  of 
th rus tor  efficiency. In  t h i s  way l o c a l  mxj" with respect t o  PJeff/Wo are  
compared over t he  en t i r e  range of Zeff. 

The example chosen is  a 300-day Mars orbi t ing probe with a, I10 pounds 
per kilowatt  and ks = 0. The propellant fraction data and the  auxilia.ry p lo t  
of &p/a(Pjeff/Wo) a re  given i n  f igure  13. From this data, the  r e s u l t s  ob
tained f o r  t he  eff ic iency comparison are shown i n  f igure  14. Figure 14(a)  
gives WL as a function of Ieff,and f igure  14(b) gives the  corresponding 
optimum values of Pjefr/Wo over the range of Ieff. Note t h a t  at  maxF" WL 
( f ig .  14 (a ) )  the  decrease i n  eff ic iency causes a decrease i n  I,ff and 

Pjeff/Wo. I n  t h i s  case the  optimum I,ff decreases from 8150 t o  7900 seconds 
and the  optimum Pjeff/Wo decreases from 0.0185 t o  0.0175 kilowatt  per pound. 

I l ! ! I / 
I 

Efficiency, 

I 

I

I i I 
I 

# I 

t " 

o	 x K) 12 I00 
Effective specific impulse, Ieff,sec 

(a) Payload fraction as function of effective specific (b) Optimum effective jet power to in i t ia l  weight ratio 
impulse for 7 = 1.0 and 7 = vmax(Ief$. as function of effective specific impulse for 7 = 1.0 

and 7 7max(Ieff)* 

Figure 14. - Effects of th rus tor  efficiency for Mars orbiting probe. Total travel time, 300 days; specific powerplant weight, 
10 pounds per kilowatt; structural  factor, 0. 
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c 

The reason f o r  these ne t  e f f ec t s  i s  bes t  explained with the a i d  of f i g 
ure 15, which gives wp and &&Xeff as a function of Ieff-For 'q = 1.0,
&p/aIeff m u s t  be zero f o r  optimim wL, and as seen from equation (B16b), 

1.0. 
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.-	0 

iwer to
P in i t ia l  weight ratio, 0' 

PjeffM'o, A.. #-opul! n 

kwllb boundary 

propuI! 

2 1 4000 6000 8000 10.000 12,000 
Effective specific impulse, Ieff,sec 

(a) Propellant fraction as function of vehicle perform- (b) Partial derivative of propellant fraction wi th  respect 
ance parameters. to effective specific impulse as function of vehicle 

performance parameters. 

Figure 15. -Trajectory results for 300-day Mars orbi t ing probe. 

&@Ieffm u s t  be posi t ive f o r  7 = Tmax( Ie f f ) .  Figure 15(b) shows t h a t  the  
ac tua l  slope bp/aIeff (a t  constant Pjeff/Wo) changes quite rapidly near 
zero. Therefore, it i s  possible t o  s a t i s f y  equation (B16b) with almost any 
eff ic iency function over a very s m a l l  range of Ieff f o r  bp/aIeff = 0. For 
example, wP = 0.257 and Ieff= 6870 seconds a t  Pjeff/Wo = 0.015 kilowatt per 
pound where awp/aIeff = 0 (f ig .  15). Using the  thrus tor  eff ic iency assumed i n  
f igure  12  r e su l t s  in &#Ieff= l.0X10'5 second'', which gives wp = 0.259 
and Ieff= 7000 seconds. This i s  an increase of only 130 seconds in Ieff-
Since this s h i f t  Fn Ieff i s  small at constant Pjeff/Wo, the  change in pro
pe l lan t  required is a lso  small - f o r  t he  previous example, wp increases abotrb 
1.2 percent of WO f o r  t h e  decrease i n  'q from L O  t o  0.740. Thus, the  de
crease in payload f r ac t ion  (5.6 percent of Wo) shown in figure 14 is caused 
mainly by an increase i n  powerplant f r ac t ion  (4-4percent of WO) because of an 
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ef fec t ive  increase i n  a. Since t h e  powerplant f r ac t ion  will increase over t h e  
e n t i r e  range of Pjeff/Wo and Ieff f o r  7 l e s s  than L O ,  the overa l l  maxi
mum wL w i l l  occur a t  a lower Pjeff&. 

W t h  the  aforementioned arguments, minimum wp would serve as a good es
t imate f o r  the  optimum wp f o r  any similar e f f ic iency  function, 11 = 7-(Ieff)+ 
To estimate payload fractions,  only a. need be modified by 1/11 f o r  t h e  effi
ciency function assumed, 

A f inal  point t o  be made about t h e  example concerns t h e  calculat ion pro
cedure, Normally when t h e  effect  of a parameter (e+g,, eff ic iency)  i s  studied, 
payload f rac t ions  are  computed and the r e su l t s  p lo t ted  t o  determine the  opti
mums. A s  shown here, t he  calculat ion procedure can be shortened i f  auxi l ia ry  
p lo ts  of slopes of wp against  Pjeff/Wo and Ieff are available. I n  pre
paring the  results of f igure  14 f o r  7 = vmx(Ieff) ,  f i v e  data points were cal
culated by means of t h e  method using slopes. A t  least three o r  four times t h a t  
many calculations a re  needed to  produce the same curve i f  the  optimums are  t o  
be determined by plott ing,  Thus, repeated WL calculat ions would de f in i t e ly  
warrant the  construction of the  auxi l ia ry  p lo ts  of the  slopes f romthe  wpdata and the  use of the method given previously. 

Maximum Payload 

The problem of maximum payload is developed here f o r  t h e  300-day Mars or
b i t i ng  probe mission. As  s t a t ed  previously, maximum payload and maximum pay
load  f r ac t ion  are not synonymous. For t h i s  reason the conditions necessary f o r  
t h i s  second type of optimum a re  developed here, I n  the  example given, it is 
assumed that the e l e c t r i c  powerplant weighs 10 pounds per k i lova t t  and ks = 0. 
The same state-of-the-art  electron-bombardment t h r u s t o r s  used t o  illustrate t h e  
e f f ec t  of eff ic iency a re  a l s o  assumed. Thus, f o r  this case payload is 

f \ 

where 7 i s  considered, as before, t o  be a function of only Xeff a.nd vu, 
Therefore, from equation (B17) it is seen that there are  four  independent var i 
ables - 7u, feff, ~ / W O ,  and Wo. These f o u r  variables,  however, cannot be 

Line of 
Line of maximum 
maximum 

WL for specified B 
and optimum Wo 

Gross weight, Wo 

Figure 16. - Typical effect of gross weight and total power 
o n  payload. 
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simultaneously optimized. Hence, two spec ia l  cases of m a x i m u m  WL t rea ted  
herein a re  the  following: 

(1)Specify Wo and maximize WL with respect t o  vu, IeffJand 8. 

( 2 )  Specify 9 and maxmze WL with respect t o  vu, Ieff,and Wo. 

T o  c l a r i f y  the difference between them, these t w o  cases a re  i l l u s t r a t e d  i n  f ig 
ure 16 where WL i s  shown as a function of W, f o r  severa l  d i f fe ren t  values 
of 8. 

The f i rs t  case i s  iden t i ca l  t o  the case of maximum payload f rac t ion  
t r ea t ed  previously. Hence, a l l  the  c r i t e r i a  necessary f o r  an optimum must 
ident i fy  the  same s e t  of vu, Ieff,and 9. Hereinafter, this case w i l l  be 
re fer red  t o  as maximum wL. Different ia t ing equation (B17) f o r  t he  second case 
gives 

where 

Subst i tut ing equation (B19) i n t o  equation ( BlS) and rearranging yield 

Then for an overal l  optimum with 9 specified,  t he  following conditions m u s t  
be sa t i s f i ed :  

(B21a.) 
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( B21b ) 

aw 1 - wp 
wO’ = - Pjeff 

(B21c) 

wO 

Several points a re  t o  be noted about the  c r i t e r i a  f o r  maximum WL. As 
expected, equation ( B 2 l a )  requires m a x i ”  overal l  efficiency. Thus, using the  
data given i n  f igure  1 2  (p, 20) s a t i s f i e s  one of t he  c r i t e r i a  f o r  an optimum. 
A comparison of these c r i t e r i a  with the case where 9 i s  specif ied t o  maximize 
wL r e s u l t s  in the  conclusion that maximum WL i s  an off-optimum payload f rac
tion. The f ina l  point t o  be made concerns the  optimum vehicle performance 
parameters f o r  maximum WL with 9 specified. Note that equations (B21)  do 
not contain a. Thus, the  optimum Pjeff/Wo and Ieff(hence wp) do no t  de
pend on the  spec i f ic  powerplant weight. 

0 .01 .02 
Effective jet power tc 

(a) Optimum propellant (b) Optimum effective spe
fraction as function c i f ic  impulse as function 
of effective jet power of effective jet power to 
to in i t ia l  weight ratio. in i t ia l  weight ratio. 

Figure 17. -Optimum propellant fraction and effective specific im
pulse for case of maximum payload with specified in i t ia l  weight 
and input  power for Mars orbiting probe. Total travel time, 300 
days; overall efficiency, 7 = vmax(1ef f .1 
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From the  previous arguments, 
t he  r e su l t s  f o r  maximum wL are 
readi ly  obtained from the  previous 
section; however, f o r  maximum WL 
with 9 specified,  the  calcula
t i o n  procedure used here consis ts  
of sa t i s fy ing  equations ( B 2 l a )  
and (BZlb) by using f igures  12,  
13 (b ) ,  and 15. The r e s u l t  i s  

Payload cal&iLations were then 
made f o r  a typ ica l  set of parame
t e r s ,  and the  maximum WL deter
mined. This method gave the  opti
mum vehicle parameters f o r  any 9 
and a, with the  assumed thrus tor  
efficiency and t o t a l  t r a v e l  t i m e .  

Typical r e s u l t s  a re  shown i n  
f igure 18 where WL i s  p lo t ted  
against  WO f o r  9 = 300 ki lo
watts, On the  f igure,  the  case 
of maximum wL (data  point)  gives 
a payload of 7100 pounds with 
Wo = 13,100 p0~nd.s. A t  maxi” 



-- 

I-I 
I/ I Maximurn - With 27,500-pound booster capa

--payload b i l i t y ,  a be t t e r  system would con-

I 1 sist of two 300-kilowatt powerplants 

A t  high powerplant spec i f ic  weights, maximum payload f r ac t ion  occurs closer 
t o  maximum payload. This i s  t rue  because as a, increa.ses, the  c r i t e r i a  
(eq. (B16a)) approaches equation (BZlc), which i s  not a function of a* A s  
maximum WL and maximum WL a re  the  two most important cases t rea ted ,  the re
sults for the  300-day mission with state-of -the-art electron-bombardment thrus
t o r s  a re  summarized i n  t ab le  I. 

~ 

O p t i ”  Effective Maximum Propella1 ’owerplant 
effective j e t  power efficiency? fract ion,  ‘raction 
specif ic  t o  i n i t i a l  %max W

P 
W

PP
impulse, weight 

(I&)opt ? prat io? 
sec jeff/WO? 

h / l b  
~ 

M a x i ”  payload 7900 0.0175 0.765 0.231 0.229 
fractiona 1 -

Maximum payload 3400 0.0060 0.550 0.491 0.109 

aPowerplant specif ic  weight, 10 lb/kw. 

Payload 
fraction 

WL 

0.540 

0.400 
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